Statistical Learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

What is Statistical Learning？

$\mathrm{y}=$ 某產品在 200 家商店的銷售量

－Shown are Sales vs．TV，Radio and Newspaper，with a blue linear－regression line fit separately to each
－Can we predict Sales using these three？Perhaps we can do better using a model Sales \approx f（TV，Radio，Newspaper）

Notation

- Here, Sales is a response, dependent variable, or target that we wish to predict. We generically refer to the response as Y
- $T V$ is a feature, independent variable, input, or predictor; we name it X_{1}. Likewise, name Radio as X_{2}, and so on
- We can refer to the input vector collectively as

$$
X=\left(X_{1}, X_{2}, X_{3}\right)
$$

- Now, we write our model as

$$
Y=f(X)+\epsilon
$$

where ϵ captures measurement errors and other discrepancies and has a mean of zero

Notation

- Vectors are represented as a column vector

$$
X_{1}=\left(\begin{array}{c}
X_{11} \\
X_{21} \\
\vdots \\
X_{n 1}
\end{array}\right)
$$

- We will use n to represent the number of distinct data points or observations
- We will let p denote the number of variables that are available for predictions
- A general design matrix or input matrix can be written as an $n \times p$ matrix

$$
\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 p} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n p}
\end{array}\right)
$$

- Y is usually a scalar in our example; if we have n observations, it can be written as

What is $f(X)$ good for?

- With a good f, we can make predictions of Y at new points $X=x$
- We can understand which components of $X=$ $\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ are important in explaining Y and which are irrelevant. e.g., Seniority and Years of Education have a big impact on Income, but Marital Status typically does not
- Depending on the complexity of f, we may be able to understand how each component X_{j} of X affects Y
- In essence, statistical learning refers to $\underline{a \text { set of }}$ approaches for estimating f

Years of Education

Why estimating f

- Prediction: In many situations, a set of inputs X are readily available, but the

$$
\hat{Y}=\hat{f}(X)
$$

- In this setting, $\hat{f}(X)$ is often treated as a black box
- There will be reducible and irreducible error
- Reducible error can be potentially improved by using the most appropriate statistical learning technique to estimate f
- Irreducible error may contain unmeasured variables that are useful in predicting Y : since we don't measure them, f cannot use them for its prediction. It may also include unmeasurable variation
- We will focus on the part of the reducible error

Why estimating f

- Inference: We are often interested in understanding the association between Y and X_{1}, \ldots, X_{p}. In this situation, we wish to estimate f, but our goal is not necessarily to make predictions for Y
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?
- We will see a number of examples that fall into the prediction setting, the inference setting, or a combination of the two

How to estimating f

- g is the distribution of data that is unknown
- We have training $\operatorname{set}\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

1. Choose a model f_{θ}

- Parametric
- Explicit assumption
- Estimating a fixed set of parameters by fitting or training
- Non-parametric
- No explicit assumption
- Need a large number of observations
all distributions

2. Choose a quality measure (objective function) for fitting

- Mean square error (Likelihood)...

3. Optimization (fitting) to choose the best θ

- Calculus to find close form solution, gradient descent, expectation-maximization...

Supervised vs Unsupervised learning

- Supervised Learning problem
- In the regression problem, Y is quantitative (e.g., price, blood pressure)
- In the classification problem, Y takes values in a finite, unordered set (survived/died, digit $0-9$, cancer class of tissue sample)
* We have training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. These are observations (examples, instances) of these measurements

- Unsupervised Learning problem

- No outcome variable, just a set of predictors (features) measured on a set of samples
- Objective is fuzzier - find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation
- Semi-supervised learning problem
- Only for m of the observations $(m<n)$ that we have the response

The regression problem

- Is there an ideal $f(X)$? In particular, what is a good value for $f(X)$ at any selected value of X, say $X=4$? There can be many Y values at $X=4$. A good value is

$$
f(4)=E(Y \mid X=4)
$$

- $E(Y \mid X=4)$ means the expected value (average) of Y given $X=4$. This ideal $f(x)=$ $E(Y \mid X=x)$ is called the regression function

The regression function $f(x)$

- Also defined for vector X; e.g.

$$
f(x)=f\left(x_{1} x_{2}, x_{2}\right)=E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right)
$$

- The ideal or optimal predictor of Y with regard to mean-squared prediction error: $f(x)=$ $E(Y \mid X=x)$ is the function that minimizes $E\left[(Y-f(X))^{2} \mid X=x\right]$ over all functions f at all points $X=x$
- $\epsilon=Y-f(x)$ is the irreducible error - i.e., even if we knew $f(x)$, we would still make errors in prediction, since at each $X=x$, there is typically a distribution of possible Y values
- For any estimate $\hat{f}(x)$ of $f(x)$, we have

$$
E\left[(Y-\hat{f}(x))^{2} \mid X=x\right]=E[f(x)+\epsilon-\hat{f}(x)]^{2}=[f(x)-\hat{f}(x)]^{2}+\operatorname{Var}(\epsilon)
$$

How to estimate f

- Typically, we have few if any data points with $X=4$ exactly!
- So that we cannot compute $E(Y \mid X=x)$!
- Relax the definition and let

$$
\hat{f}(x)=\operatorname{Ave}(Y \mid X \in N(x))
$$

where $N(x)$ is some neighborhood of x.

The curse of dimensionality...

- Nearest neighbor averaging can be good for small $p(p \leq 4)$ and large n - We will discuss smoother versions, such as kernel and spline smoothing later in the course
- Nearest neighbor methods can be lousy when p is large. Reason: the curse of dimensionality. Nearest neighbors tend to be far away in high dimensions.
- We need to get a reasonable fraction of the n values of y_{i} to average to bring the variance down - e.g., 10%
- A 10\% neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating $E(Y \mid X=x)$ by local averaging

The curse of dimensionality

10\% Neighborhood

Fraction of Volume

The curse of dimensionality

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

p	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
(a) Ball with radius R $(\mathrm{~b})$	2 R	πR^{2}	$\frac{4}{3} \pi R^{3}$	$\frac{\pi^{2}}{2} R^{4}$	$\frac{8 \pi^{2}}{15} R^{5}$	$\frac{\pi^{3}}{6} R^{6}$
Volume of hypercube 2^{p}	2	4	8	16	32	64
$r=(a) /(b)$	R	$\frac{\pi R^{2}}{4}$	$\frac{\pi R^{3}}{6}$	$\frac{\pi^{2} R^{4}}{32}$	$\frac{\pi^{2} R^{5}}{60}$	$\frac{\pi^{3} R^{6}}{384}$

$r=\frac{\pi^{\frac{p}{2}}}{2^{p} \Gamma\left(\frac{\left.\rho_{2}+1\right)}{2}\right.} R^{p}$, it turns out that if we want to cover a fraction of r of the hypercube, we will need a ball with a radius $\frac{2}{\pi^{\frac{1}{2}}}\left[r \Gamma\left(\frac{p}{2}+1\right)\right]^{\frac{1}{p}}\left(\right.$ note that $\left.\Gamma\left(\frac{p}{2}+1\right) \sim \sqrt{\pi p}\left(\frac{p}{2 e}\right)^{\frac{p}{2}}\right)$

Parametric and structured models

- The linear model is an important example of a parametric model:

$$
f_{L}(X)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}
$$

, A linear model is specified in terms of $p+1$ parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$

- We estimate the parameters by fitting the model to training data
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function $f(X)$
- A linear model $f_{L}(X)=\beta_{0}+\beta_{1} X$ gives a reasonable fit here

- A quadratic model $f_{Q}(X)=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$ fits slightly better

- Simulated example. Red points are simulated values for income from the model

$$
\begin{gathered}
\text { income }=f(\text { education, seniority })+\epsilon \\
f \text { is the blue surface }
\end{gathered}
$$

- Linear regression model fit to the simulated data

$$
\hat{f}_{L}(\text { education, seniority })=\hat{\beta}_{0}+\hat{\beta}_{1} \times \text { education }+\hat{\beta}_{2} \times \text { seniority }
$$

- More flexible regression model \hat{f}_{s} (education, seniority) fit to the simulated data. Here, we use a technique called a thin-plate spline to fit a flexible surface. We control the roughness of the fit (chapter 7)

- Even more flexible spline regression model $\hat{f}_{s}($ education, seniority) fit to the simulated data. Here the fitted model makes no errors on the training data! Also known as overfitting

Some trade-offs

- Prediction accuracy versus interpretability
- Linear models are easy to interpret; thin-plate splines are not
- Good fit versus over-fit or under-fit
- How do we know when the fit is just right?
- Parsimony versus black-box
* We often prefer a simpler model involving fewer variables over a black-box predictor involving them all

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data $\operatorname{Tr}=\left\{x_{i}, y_{i}\right\}, i=1 \ldots n$, and we wish to see how well it performs
- We could compute the average squared prediction error over Tr:

$$
M S E_{T r}=A v e_{i \in T r}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$

- This may be biased toward more overfit models
- Instead, we should, if possible, compute it using fresh test data $T e=\left\{x_{i}, y_{i}\right\}, i=1 \ldots m$,

$$
M S E_{T e}=A v e_{i \in T e}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$

- The black curve is truth. Red curve on the right is $M S E_{T e}$, grey curve is $M S E_{T r}$. Orange, blue and green curves/squares correspond to fits of different flexibility

-Here, the truth is smoother, so the smoother fit and linear model do really well

- Here, the truth is wiggly and the noise is low, so the more flexible fits do the best

[^0]
Bias-Variance Trade-off

- Suppose we have fit a model $\hat{f}(x)$ to some training data $T r$, and let $\left(x_{0}, y_{0}\right)$ be a test observation drawn from the population. If the true model is $Y=f(X)+$ ϵ (with $f(x)=E(Y \mid X=x)$), then

$$
E\left[\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}\right]=\operatorname{Bias}_{T r}\left[\hat{f}\left(x_{0}, T r\right)\right]^{2}+\operatorname{Var}_{T r}\left[\hat{f}\left(x_{0}, T r\right)\right]+\operatorname{Var}(\epsilon)
$$

- The expectation averages over the variability of y_{0} as well as the variability in Tr. Note that $\operatorname{Bias}_{T r}\left[\hat{f}\left(x_{0}, T r\right)\right]=E\left[\hat{f}\left(x_{0}, T r\right)\right]-f\left(x_{0}\right)$
- Typically, as the flexibility of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a bias-variance trade-off
- Proof of the decomposition

https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff

Bias-variance trade-off for the three examples

Classification Problems

- Here, the response variable Y is qualitative - e.g. email is one of $C=$ (spam, ham) (ham = good email), digit class is one of $C=\{0,1, \ldots, 9\}$. Our goals are to:
- Build a classifier $C(X)$ that assigns a class label from C to a future unlabeled observation X
- What is an optimal classifier?
- Understand how flexibility affects the classification

The orange/blue marks indicate the response Y, either 0 or 1

- Is there an ideal $C(X)$? Suppose the K elements in C are numbered $1,2, \ldots, K$. Let

$$
p_{k}(x)=\operatorname{Pr}(Y=k \mid X=x), k=1,2, \ldots, K
$$

- These are the conditional class probabilities at x; e.g., see the little barplot at $x=5$. Then the Bayes optimal classifier at x is $C(x)=j$ if $p_{j}(x)=\max \left\{p_{1}(x), p_{2}(x), \ldots, p_{k}(x)\right\}$

- Nearest-neighbor averaging can be used as before. It also breaks down as the dimension grows. However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_{k}(x), k=$ 1,..., K

Classification: some details

- Typically, we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$
\operatorname{Err}_{T e}=A v e_{i \in T e} I\left[y_{i} \neq \hat{C}\left(x_{i}\right)\right]
$$

* The Bayes classifier (using the true $\hat{p}_{k}(x)$) has the smallest error (in the population)
- Support-vector machines build structured models for $C(x)$
- We will also build structured models for representing the $p_{k}(x)$. e.g., Logistic regression, generalized additive models

Example: K-nearest neighbors in two dimensions

- The Bayes classifier produces the lowest possible test error rate, called the Bayes error rate
, $1-\max _{j} \operatorname{Pr}\left(Y=j \mid X=x_{0}\right)$

Example: K-nearest neighbors in two dimensions

- K-nearest neighbors (KNN) classifier
- $\operatorname{Pr}\left(Y=j \mid X=x_{0}\right)=\frac{1}{K} \sum_{i \in T r} I\left(y_{i}=j\right)$

Example: K-nearest neighbors in two dimensions

KNN: K=1

KNN: K=100

Example: K-nearest neighbors in two dimensions

Appendix

The Bias-variance tradeoff

- $f=f(x), \hat{f}=\hat{f}(x, \operatorname{Tr}), \operatorname{Var}(X)=E\left(X^{2}\right)-E[X]^{2}$
- $y=f+\epsilon \rightarrow E(y)=E(f)=f(f$ is deterministic, independent of Tr and \hat{f} is independent of ϵ)
- $\operatorname{Var}[y]=E\left[(y-E(y))^{2}\right]=E\left[(y-f)^{2}\right]=E\left[\epsilon^{2}\right]=\operatorname{Var}[\epsilon]+E[\epsilon]^{2}=\sigma^{2}$
- $E\left[(y-\hat{f})^{2}\right]=E\left[(f+\epsilon-\hat{f}+E[\hat{f}]-E[\hat{f}])^{2}\right]$
$=E\left[(f-E[\hat{f}])^{2}\right]+E\left[\epsilon^{2}\right]+E\left[(E[\hat{f}]-\hat{f})^{2}\right]+2 \mathrm{E}[(f-E[\hat{f}]) \epsilon]+2 \mathrm{E}[\epsilon(E[\hat{f}]-\hat{f})]$
$+2 E[(E[\hat{f}]-\hat{f})(f-E[\hat{f}])]=(f-E[\hat{f}])^{2}+E\left[\epsilon^{2}\right]+E\left[(E[\hat{f}]-\hat{f})^{2}\right]$
$=\operatorname{Bias}[\hat{f}]^{2}+\operatorname{Var}[\hat{f}]+\sigma^{2}$
- $M S E=E_{\chi}\left[\operatorname{Bias}_{T r}[\hat{f}(x, T r)]^{2}+\operatorname{Var}_{D}[\hat{f}(x, T r)]\right]+\sigma^{2}($ Taking expectation over $x)$

[^0]: - Proof of testing error is usually larger than the training error

